- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Getz, Wayne M. (2)
-
Koopman, James S. (2)
-
Salter, Richard (2)
-
Simon, Carl P. (2)
-
Baraniak, Priya (1)
-
Bedi, Ram (1)
-
Eaker, Shannon (1)
-
Fischer, Lynn (1)
-
Gielen, Kurt (1)
-
Hadjisavas, Michael (1)
-
Hansen, Caitlin (1)
-
Hunsberger, Joshua (1)
-
Johnson, Jed (1)
-
Luisa Vissat, Ludovica (1)
-
Mahdavi, Behzad (1)
-
Miller, Cameron (1)
-
Pereira, Taciana (1)
-
Ramamoorthy, Preveen (1)
-
Simon, Carl (1)
-
Tubon, Thomas (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Getz, Wayne M.; Salter, Richard; Luisa Vissat, Ludovica; Koopman, James S.; Simon, Carl P. (, Journal of The Royal Society Interface)We present methods for building a Java Runtime-Alterable-Model Platform (RAMP) of complex dynamical systems. We illustrate our methods by building a multivariant SEIR (epidemic) RAMP. Underlying our RAMP is an individual-based model that includes adaptive contact rates, pathogen genetic drift, waning and cross-immunity. Besides allowing parameter values, process descriptions and scriptable runtime drivers to be easily modified during simulations, our RAMP can used within R-Studio and other computational platforms. Process descriptions that can be runtime altered within our SEIR RAMP include pathogen variant-dependent host shedding, environmental persistence, host transmission and within-host pathogen mutation and replication. They also include adaptive social distancing and adaptive application of vaccination rates and variant-valency of vaccines. We present simulation results using parameter values and process descriptions relevant to the current COVID-19 pandemic. Our results suggest that if waning immunity outpaces vaccination rates, then vaccination rollouts may fail to contain the most transmissible variants, particularly if vaccine valencies are not adapted to deal with escape mutations. Our SEIR RAMP is designed for easy use by others. More generally, our RAMP concept facilitates construction of highly flexible complex systems models of all types, which can then be easily shared as stand-alone application programs.more » « less
-
Hunsberger, Joshua; Simon, Carl; Zylberberg, Claudia; Ramamoorthy, Preveen; Tubon, Thomas; Bedi, Ram; Gielen, Kurt; Hansen, Caitlin; Fischer, Lynn; Johnson, Jed; et al (, STEM CELLS Translational Medicine)
An official website of the United States government
